Kullback-Leibler Upper Confidence Bounds for Optimal Sequential Allocation

نویسندگان

  • Olivier Cappé
  • Aurélien Garivier
  • Odalric-Ambrym Maillard
  • Rémi Munos
  • Gilles Stoltz
  • Paul Sabatier
چکیده

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Kullback-Leibler Upper Confidence Bounds for Optimal Sequential Allocation Olivier Cappé, Aurélien Garivier, Odalric-Ambrym Maillard, Rémi Munos, Gilles Stoltz

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower bounds for volatility estimation in microstructure noise models∗

In this paper minimax lower bounds are derived for the estimation of the instantaneous volatility in three related high-frequency statistical models. These bounds are based on new upper bounds for the Kullback-Leibler divergence between two multivariate normal random variables along with a spectral analysis of the processes. A comparison with known upper bounds shows that these lower bounds are...

متن کامل

Model Confidence Set Based on Kullback-Leibler Divergence Distance

Consider the problem of estimating true density, h(.) based upon a random sample X1,…, Xn. In general, h(.)is approximated using an appropriate in some sense, see below) model fƟ(x). This article using Vuong's (1989) test along with a collection of k(> 2) non-nested models constructs a set of appropriate models, say model confidence set, for unknown model h(.).Application of such confide...

متن کامل

2 9 Ju n 20 13 Concentration and Confidence for Discrete Bayesian Sequence Predictors

Bayesian sequence prediction is a simple technique for predicting future symbols sampled from an unknown measure on infinite sequences over a countable alphabet. While strong bounds on the expected cumulative error are known, there are only limited results on the distribution of this error. We prove tight high-probability bounds on the cumulative error, which is measured in terms of the Kullbac...

متن کامل

Concentration and Confidence for Discrete Bayesian Sequence Predictors

Bayesian sequence prediction is a simple technique for predicting future symbols sampled from an unknown measure on infinite sequences over a countable alphabet. While strong bounds on the expected cumulative error are known, there are only limited results on the distribution of this error. We prove tight high-probability bounds on the cumulative error, which is measured in terms of the Kullbac...

متن کامل

The Multi-armed Bandit Problem: an Efficient Non-parametric Solution

Lai and Robbins (1985) and Lai (1987) provided efficient parametric solutions to the multi-armed bandit problem, showing that arm allocation via upper confidence bounds (UCB) achieves minimum regret. These bounds are constructed from the Kullback-Leibler information of the reward distributions, estimated from within a specified parametric family. In recent years there has been renewed interest ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017